Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Immunol ; 24(9): 1487-1498, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37474653

RESUMEN

Malaria is caused by Plasmodium species transmitted by Anopheles mosquitoes. Following a mosquito bite, Plasmodium sporozoites migrate from skin to liver, where extensive replication occurs, emerging later as merozoites that can infect red blood cells and cause symptoms of disease. As liver tissue-resident memory T cells (Trm cells) have recently been shown to control liver-stage infections, we embarked on a messenger RNA (mRNA)-based vaccine strategy to induce liver Trm cells to prevent malaria. Although a standard mRNA vaccine was unable to generate liver Trm or protect against challenge with Plasmodium berghei sporozoites in mice, addition of an agonist that recruits T cell help from type I natural killer T cells under mRNA-vaccination conditions resulted in significant generation of liver Trm cells and effective protection. Moreover, whereas previous exposure of mice to blood-stage infection impaired traditional vaccines based on attenuated sporozoites, mRNA vaccination was unaffected, underlining the potential for such a rational mRNA-based strategy in malaria-endemic regions.


Asunto(s)
Vacunas contra la Malaria , Malaria , Animales , Ratones , Células T de Memoria , Malaria/prevención & control , Hígado , Plasmodium berghei/genética , Linfocitos T CD8-positivos
2.
Bioconjug Chem ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022946

RESUMEN

Synthetic vaccines that induce T cell responses to peptide epitopes are a promising immunotherapy for both communicable and noncommunicable diseases. Stimulating strong and sustained T cell responses requires antigen delivery to appropriately activated antigen presenting cells (APCs). One way this can be accomplished is by chemically conjugating immunogenic peptide epitopes with α-galactosylceramide (α-GalCer), a glycolipid that acts as an immune adjuvant by inducing stimulatory interactions between APCs and type I natural killer T (NKT) cells. Here we investigate whether increasing the ratio of antigen:adjuvant improves antigen-specific T cell responses. A series of conjugate vaccines was prepared in which one, two, four, or eight copies of an immunogenic peptide were covalently attached to a modified form of α-GalCer via the poly(ethoxyethylglycinamide) dendron scaffold. Initial attempts to synthesize these multivalent conjugate vaccines involved attaching the bicyclo[6.1.0]non-4-yne (BCN) group to the adjuvant-dendron structure followed by strain-promoted azide-alkyne cycloaddition of the peptide. Although this approach was successful for preparing vaccines with either one or two peptide copies, the synthesis of vaccines requiring attachment of four or eight BCN groups suffered from low yields due to cyclooctyne degradation. Instead, conjugate vaccines containing up to eight peptide copies were readily achieved through oxime ligation with adjuvant-dendron constructs decorated with the 8-oxo-nonanoyl group. When evaluating T cell responses to vaccination in mice, we confirmed a significant advantage to conjugation over admixes of peptide and α-GalCer, regardless of the peptide to adjuvant ratio, but there was no advantage to increasing the number of peptides attached. However, it was notable that the higher ratio conjugate vaccines required lower levels of NKT cell activation to be effective, which could be a safety advantage for future vaccine candidates.

3.
Magn Reson Chem ; 61(2): 106-129, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34286862

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique well known for its ability to elucidate structures and analyse mixtures and its quantitative nature. However, the cost and maintenance of high field NMR instruments prevent its widespread use by forensic chemists. The introduction of benchtop NMR spectrometers to the market operating at 40-80 MHz have a small footprint, are easy to use and cost much less than high field instruments, which makes them well suited to meet the needs of forensic chemists. These modern low field spectrometers are often capable of running multiple nuclei including 1 H, 13 C, 19 F and 31 P; 2D NMR experiments and advanced experiments such as solvent suppression and diffusion-ordered spectroscopy (DOSY) are possible. This has resulted in a number of publications in the area of forensic chemistry using benchtop NMR spectroscopy in the last 5 years that was previously missing from the literature. This mini review summarises this research including examples of benchtop NMR being used to identify and quantify compounds relevant to forensics and some advanced methods that may be used to overcome some of the limitations of these instruments for forensic analysis. Further validation and automation are likely required for widespread uptake of benchtop NMR in industry; however, it has been demonstrated as a useful complement to other analytical techniques commonplace of forensic laboratories.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Difusión , Solventes
4.
RSC Chem Biol ; 3(5): 551-560, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35656478

RESUMEN

Self-adjuvanting vaccines consisting of peptide epitopes conjugated to immune adjuvants are a powerful way of generating antigen-specific immune responses. We previously showed that a Plasmodium-derived peptide conjugated to a rearranged form of α-galactosylceramide (α-GalCer) could stimulate liver-resident memory T (TRM) cells that were effective killers of liver-stage Plasmodium berghei ANKA (Pba)-infected cells. To investigate if similar or even superior TRM responses can be induced by modifying the α-GalCer adjuvant, we created new conjugate vaccine cadidates by attaching an immunogenic Plasmodium-derived peptide antigen to 6″-substituted α-GalCer analogues. Vaccine synthesis involved developing an efficient route to α-galactosylphytosphingosine (α-GalPhs), from which the prototypical iNKT cell agonist, α-GalCer, and its 6″-deoxy-6″-thio and -amino analogues were derived. Attaching a cathepsin B-cleavable linker to the 6″-modified α-GalCer created pro-adjuvants bearing a pendant ketone group available for peptide conjugation. Optimized reaction conditions were developed that allow for the efficient conjugation of peptide antigens to the pro-adjuvants via oxime ligation to create new glycolipid-peptide (GLP) conjugate vaccines. A single dose of the vaccine candidates induced acute NKT and Plasmodium-specific CD8+ T cell responses that generated potent hepatic TRM responses in mice. Our findings demonstrate that attaching antigenic peptides to 6″-modifed α-GalCer generates powerful self-adjuvanting conjugate vaccine candidates that could potentially control hepatotropic infections such as liver-stage malaria.

5.
Sci Immunol ; 5(48)2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591409

RESUMEN

Liver resident-memory CD8+ T cells (TRM cells) can kill liver-stage Plasmodium-infected cells and prevent malaria, but simple vaccines for generating this important immune population are lacking. Here, we report the development of a fully synthetic self-adjuvanting glycolipid-peptide conjugate vaccine designed to efficiently induce liver TRM cells. Upon cleavage in vivo, the glycolipid-peptide conjugate vaccine releases an MHC I-restricted peptide epitope (to stimulate Plasmodium-specific CD8+ T cells) and an adjuvant component, the NKT cell agonist α-galactosylceramide (α-GalCer). A single dose of this vaccine in mice induced substantial numbers of intrahepatic malaria-specific CD8+ T cells expressing canonical markers of liver TRM cells (CD69, CXCR6, and CD101), and these cells could be further increased in number upon vaccine boosting. We show that modifications to the peptide, such as addition of proteasomal-cleavage sequences or epitope-flanking sequences, or the use of alternative conjugation methods to link the peptide to the glycolipid improved liver TRM cell generation and led to the development of a vaccine able to induce sterile protection in C57BL/6 mice against Plasmodium berghei sporozoite challenge after a single dose. Furthermore, this vaccine induced endogenous liver TRM cells that were long-lived (half-life of ~425 days) and were able to maintain >90% sterile protection to day 200. Our findings describe an ideal synthetic vaccine platform for generating large numbers of liver TRM cells for effective control of liver-stage malaria and, potentially, a variety of other hepatotropic infections.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Glucolípidos/inmunología , Hígado/inmunología , Vacunas contra la Malaria/inmunología , Malaria/inmunología , Péptidos/inmunología , Animales , Linfocitos T CD8-positivos/patología , Hígado/patología , Malaria/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vacunación
6.
J Agric Food Chem ; 66(50): 13277-13284, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30516980

RESUMEN

Polysaccharides from feijoa fruit were extracted and analyzed; the composition of these polysaccharides conforms to those typically found in the primary cell walls of eudicotyledons. The two major polysaccharide extracts consisted of mainly pectic polysaccharides and hemicellulosic polysaccharides [xyloglucan (77%) and arabinoxylan (16%)]. A collection of commensal Bacteroides species was screened for growth in culture using these polysaccharide preparations and placed into five categories based on their preference for each substrate. Most of the species tested could utilize the pectic polysaccharides, but growth on the hemicellulose was more limited. Constituent sugar and glycosyl linkage analysis showed that species that grew on the hemicellulose fraction showed differences in their preference for the two polysaccharides in this preparation. Our data demonstrate that the members of the genus Bacteroides show differential hydrolysis of pectic polysaccharides, xyloglucan, and arabinoxylan, which might influence the structure and metabolic activities of the microbiota in the human gut.


Asunto(s)
Bacteroides/crecimiento & desarrollo , Feijoa/química , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/química , Bacteroides/metabolismo , Feijoa/metabolismo , Frutas/química , Frutas/metabolismo , Humanos , Extractos Vegetales/metabolismo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...